СВИДЕТЕЛЬСТВО О ПРОДАЖЕ

Продан	
	(наименование организации продавца)
	(адрес, тел, т/факс.)
ДАТА ПРОДАЖИ	ШТАМП ОРГАНИЗАЦИИ ПРОДАВЦА
ОТМЕТКА ДИЛЕРА	

ОТМЕТКИ О РЕМОНТЕ

	НАИМЕНОВАНИЕ РАБОТ	ПРИМЕЧАНИЕ
1		
'		
	ДАТА:	
2		
	ДАТА:	
3		
	ДАТА:	

КОНТАКТЫ

115054, г.Москва, ул. Щипок, д.11/28, а/я 75 e-mail: ned@air-ned.com тел.: (495)785-84-48, 8-800-555-84-48 (многоканальный)

смесительные узлы SME и SMEX

ТУ 4864-057-99713521-2008

Паспорт

5.3. Запуск и эксплуатация

- 5.3.1. Перед запуском необходимо:
 - заполнить систему и насос теплоносителем, вытеснив весь воздух (при необходимости удалить резьбовую заглушку в насосе (рис.3, поз.3)) и проверить легкость вращения вала насоса пробным запуском;

<u>Примечание</u>: слишком шумная работа насоса может свидетельствовать о наличии воздуха в системе, малом давлении на входной магистрали либо загрязнении или поломке насоса — попробовать переключить насос на более низкую скорость вращения (рис.3, поз.5).

- убедиться в полном открытии обоих кранов (рис.1(2), поз.1);
- 5.3.2. Режим скорости работы насоса выбирается исходя из объёма обслуживаемого теплообменника и требуемого мощностного режима обогрева. При работе необходимо следить за отсутствием протечек и ровной (без шумов) работой насоса.

При необходимости, можно производить изменение частоты вращения электродвигателя насоса переключателем (рис.3, поз.5) без его выключения.

- 5.3.3. Необходимо периодически (перед началом эксплуатации и раз в 3 месяца при работе) проверять чистоту фильтра (рис.1(2), поз.4), откручивая пробку, и чистить внутреннюю полость отстойника.
- 5.3.4. Для недопущения конденсации влаги в обмотке электродвигателя насоса температура жидкости при эксплуатации не должна снижаться до температуры окружающего воздуха.
- 5.3.5. При эксплуатации смесительного узла на теплоносителе с температурой более +110°С (перегретая вода) необходимо использовать смесительные узлы обратной конфигурации, конструкция которых предотвращает попадание горячей воды от котла напрямую в насос.

Настоящий паспорт является объединенным эксплуатационным документом смесительных узлов **SME** и **SMEX** (далее по тексту «смесительные узлы») типоразмеров с 40-1,0 по 110-16,0.

Паспорт содержит сведения, необходимые для правильной и безопасной эксплуатации изделий и поддержания их в исправном состоянии.

1. ОБЩИЕ СВЕДЕНИЯ ОБ ИЗДЕЛИИ

Смесительный узел SME	TY 4864-057-99713521-2008
Конфигурация: прямой / обратный	
Заводской номер Дата выпуска	l
Π итание насоса: 1×220 В, 50 Γ ų.	
Отметка о приеме качества	
«» 20	_ Γ.

<u> 2. НАЗНАЧЕНИЕ И ОСОБЕННОСТИ КОНСТРУКЦИИ</u>

Смесительные узлы предназначены для регулирования теплопроизводительности и защиты водяных нагревателей от размораживания (при соединении узла с управляющим блоком или иными компонентами системы защиты от замерзания).

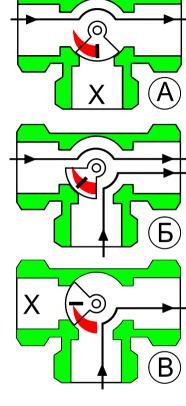
Смесительный узел допускается устанавливать как внутри, так и снаружи отапливаемого помещения (при использовании в качестве теплоносителя незамерзающих смесей, например раствора этиленгликоля).

Конструктивно смесительные узлы разделяются на узлы с 3-х ступенчатым (SME) и плавным (SMEX) регулированием трёхходового вентиля подачи теплоносителя, отличаясь при этом только типом сервопривода.

Теплоноситель (вода или антифриз) протекающий через смесительный узел не должен содержать твёрдых примесей и агрессивных химических веществ, способствующих коррозии или химическому разложению меди, латуни, нержавеющей стали цинка, пластмасс, резины и чугуна. Антифриз должен иметь концентрацию этиленгликоля не более 50%.

Предельно допустимые эксплуатационные параметры теплоносителя для смесительных узлов прямой конфигурации:

- максимальная температура +110°C;
- максимальное рабочее давление 1 МПа, минимальное 20 кПа;
- максимальный перепад давления на трёхходовом вентиле 100кПа;


3. УСТРОЙСТВО И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Регулирование мощности осуществляется с помощью трехходового вентиля 6 (см. рисунок 1(2)) управляемого сервоприводом 5. Насос 7 (защищен встроенными термоконтактами с автоматическим перезапуском) обеспечивает постоянную циркуляцию жидкости (теплоносителя) и служит в основном для компенсации потерь давления в теплообменнике и компонентах смесительного узла.

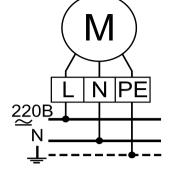
В режиме работы теплообменника на полную мощность (положение вентиля \mathbf{A} на рисунке справа) вся жидкость циркулирует между теплообменником и котлом отопления по большому контуру.

Если требуется уменьшение (положение вентиля \mathbf{b} на рисунке справа) мощности, по команде от блока управления сервопривод $\mathbf{5}$ открывает трехходовой вентиль $\mathbf{6}$ на частичный пропуск отработавшей (охлажденной) в теплообменнике жидкости по направлению \mathbf{A} (рис. $\mathbf{1}(\mathbf{2})$) обратно в подмес к входящей горячей тем самым охлаждая её.

При нулевой отопительной мощности (положение вентиля ${\bf B}$) вентиль полностью перекрывает поток от котла и жидкость циркулирует только в контуре ${\bf B}$ (рис. 1(2)) и теплообменнике при работе насоса узла 7. При этом — для предотвращения остановки протока в котловом контуре узел оборудован байпасом который пропускает поток ${\bf G}$ (рис. 1(2)) обратно в котел через обратный клапан 3. На ветви байпаса установлен регулировочный вентиль 2 который служит для настройки оптимального давления открытия обратного клапана только в момент перекрытия вентилем 2 потока к теплообменнику.

Расшифровка обозначения:

SME 40 - 1,0


пропускная способность трёхходового вентиля Kvs, м³/час параметр давления циркуляционного насоса (напор), дм

исполнение смесительного узла (SME или SMEX)

Примечания:

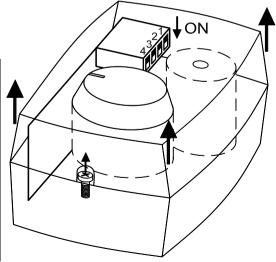
- 1. Смесительные узлы обратной конфигурации имеют одинаковую структуру компонентов с узлами прямой конфигурации, различаясь только в компоновке (см. рисунок 1 и 2 и п.5.3.5).
- 2. Исполнение смесительного узла определяется типом сервопривода, от которого зависит способ регулирования:
 - смесительные узлы **SME**, предназначенные для трёхпозиционного (дискретного 0°-45°-90°) регулирования, комплектуются сервоприводом трёхходового вентиля ESBE **ARA** 663.

5.2. Электромонтаж

Подключение электродвигателя <u>циркуляционного насоса</u> (рис.1(2), поз.7) производится согласно рисунка справа изолированным кабелем с сечением провода не менее 0.75мм².

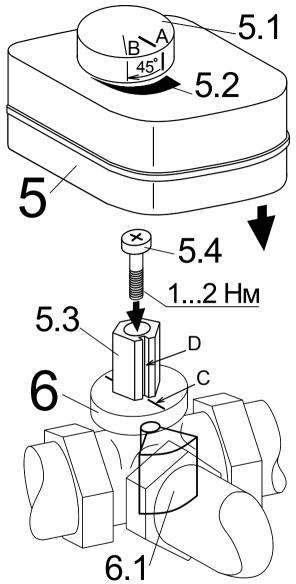
Кабель заводится в коробку электроподключения (рис.3, поз.1) через зажимной сальник и подключается к клеммам внутри неё. Кабель должен быть надежно закреплен на несущих конструкциях.

Необходимо предусмотреть двухполярный разъединитель, с расстоянием размыкания контактов не менее 3мм. Не требуется никакой защиты от перегрузки электродвигателя.


Необходимо обеспечить надежное заземление насоса.

Подключение сервопривода (рис.1(2), поз.5) в зависимости от модели производится согласно схемам, представленным на рисунке справа.

	N	синий ≻ ОБЩИЙ
$(M) \vdash$	CW	коричневый ≥24В
	CCW	черный →24В ✓
ARA 663		1
	N	синий
(M)—	\simeq	коричневый → 24В, AC/DC
	Υ	<u>ЧЕРНЫЙ</u> ► <u>СИГН.УПРАВЛ</u> .
ARA 659	(55	9) 0-10B,2-10B, 0-20MA,4-20MA


Настройку сервопривода ARA 659 (559) под конкретные режимы работы необходимо проводить согласно данным нижеприведенной таблицы.

Перекли	очатель 1	Время открытия	
OFF		120 секунд	
ON		45 секунд	
Переключатель 2		Направление	
		открытия	
0	FF	по часовой	
C	N	против	
Перекл. 3	Перекл. 4	Сигнал управления	
OFF	OFF	0 – 10 B	
ON	OFF	0 - 20 MA	
OFF	ON	2 - 10 B	
ON	ON	4 - 20 MA	

Все кабели необходимо проводить в гофро-рукаве и надёжно закреплять на несущих конструкциях.

ВНИМАНИЕ! Перед пробным запуском сервопривода необходимо проверить правильность его установки в следующем порядке:

- 1. Преодолевая сопротивление фиксатора вынуть ручку 5.1 из корпуса привода 5 (у привода ARA 559 утопленная ручка поддевается плоской отвёрткой через специальную выемку в корпусе).
- 2. Через сквозную полость в корпусе привода под ручкой вывернуть винт крепления привода 5.4 и снять привод с адаптера 5.3.
- 3. Поворотом адаптера выставить положение перекрытия ветви подмеса кулачком 6.1 трёхходового вентиля 6 (совмещение прорези **D** на адаптере с риской **C** на фланце вентиля со стороны ветви подмеса).
- 4. Установив ручку **5.1** в корпус привода, не утапливая её до конца, выставить её контрольную риску в начальное положение **A** согласуя её со шкалой **5.2** на корпусе.
- 5. Надеть корпус привода 5 на адаптер 5.3 до плотной посадки в гнездо фланца вентиля 6 не сдвигая ручки 5.1 и зафиксировать его винтом 5.4.
- 6. Повернуть ручку 5.1 надавливая на неё до положения **B** (45° по стрелке на рисунке) она должна утопиться в рабочее положение на метке **B**.

При этом кулачок 6.1 займёт среднее положение открыв все каналы вентиля 6 – привод готов к работе.

Примечания:

- 1. Ручка 5.1 привода имеет два положения:
 - <u>Утоплена</u> привод работает от сервомотора рабочий режим привода;
 - <u>Приподнята</u> привод разъединён с сервомотором и вращается «от руки» для настройки (у модели 559 ручка поддевается плоской отвёрткой через выемку в корпусе);
- 2. Положение корпуса привода 5 относительно вентиля 6 может быть произвольным.

- смесительные узлы **SMEX**, предназначенные для пропорционального (плавного) регулирования аналоговым сигналом 0-10B, комплектуются сервоприводом трёхходового вентиля ESBE **ARA 659 (559)**.
- 3. В конструкцию смесительных узлов могут быть внесены изменения, не ухудшающие их потребительских свойств и не учтенные в настоящем паспорте.

Комплектация и технические параметры

	Циркуляцион-	Трёхходовой	Резьба	Pa ₃	меры,	MM	Macca
Типоразмер	ный	вентиль	присоеди-	L	Н	К	узла, кг
	насос	ESBE	нения	L	11	IX	уэла, кі
40-1,0	GHN 25/40-130	VRG 131 15-1,0		860	300	210	
40-1,6	UHN 25/40-150 или	VRG 131 15-1,63					8,7
40-2,5	DAB VA 35/130	VRG 131 15-2,5					
40-4,0		VRG 131 20-4					
60-4,0	GHN 25/65-130	VRG 131 20-4	1"	970	210	225	0.0
60-6,3	или DAB VA 65/130	VRG 131 20-6,3		870	310	235	8,8
80-6,3	GHN 32/80-130	VRG 131 20-6,3		000	220	240	10.1
80-10,0	или DAB A 56/180M	VRG 131 25-10		880	320	240	10,1
80-16,0	DAB A 56/180M		11/4"	1020	380	270	14,2
110-16,0	DAB A 110/180XM	VRG 131 32-16					15,5

Технические характеристики насосов

Насос	GHN 25/40-130	GHN 25/65-130	GHN 32/80-130	DAB A80/180 XM
	(DAB VA 35/130)	(DAB VA 65/130)	(DAB A 56/180M)	(DAB A 110/180XM)
Напряжение	1×230В, 50Гц			
Элзащита	IP 42 (IP 44)			
Мощность макс.,Вт	75 (71)	100 (102)	245 (287)	245 (410)
Ток макс., А	0,31	0,43 (0,45)	1,04 (1,3)	1,05 (1,78)

Технические характеристики сервоприводов

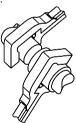
Сервопривод	ARA 663	ARA 659 (559)	
Питание	24VAC; 50Hz	24VAC/DC; 50/60Hz	
Элзащита	IP 41		
Угол поворота	90°		
Момент	6 Нм		
Время поворота на	120 сек	45 / 120 сек	
Мощность	2 VA	5W / 8VA	

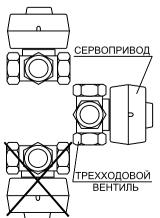
4. МЕРЫ БЕЗОПАСНОСТИ

- 4.1. При подготовке узлов к работе и при их эксплуатации необходимо соблюдать требования безопасности, изложенные в ГОСТ 12.4.021-75, «Правилах техники безопасности при эксплуатации электроустановок потребителей» и «Правилах технической эксплуатации электроустановок потребителей».
- 4.2. К монтажу и эксплуатации смесительных узлов допускаются лица, изучившие настоящий паспорт и прошедшие инструктаж по соблюдению правил техники безопасности.
 - 4.3. Монтаж должен обеспечивать свободный доступ к местам их обслуживания. *Примечание*: Несогласованное с производителем изменение конструкции смесительного узла или замена его элементов ведёт к снятию изделия с гарантии.

5. МОНТАЖ И ЭКСПЛУАТАЦИЯ

5.1. Монтаж


Установку и ввод в эксплуатацию смесительного узла может производить только специализированная монтажная организация в соответствии с согласованным проектом квалифицированного проектировщика.


Перед монтажом необходимо проверить состояние компонентов смесительного узла, изоляцию проводов насоса и сервопривода, пластины и коллекторы нагревателя.

Если теплоносителем является вода, узел устанавливается только внутри помещения, где поддерживается постоянная температура, которая не должна понизиться до точки замерзания.

Установка в наружном помещении возможна только при использовании в качестве теплоносителя незамерзающих жидкостей (например раствора этиленгликоля).

Для более точной работы автоматики <u>подключение</u> производится посредством штатных нержавеющих гибких трубок с резьбовыми гайками (рис.1(2), поз.8) непосредственно к патрубкам входного коллектора теплообменника или поблизости от него (при необходимости трубки можно укорачивать или сгибать). К шаровым запорным кранам присоединяется трубопровод котлового контура.

ВНИМАНИЕ! При присоединении трубопроводов недопустима передача усилия затяжки резьбовых соединений на патрубки секции. Трубы должны иметь индивидуальное разъемное крепление и не опираться на патрубки секции.

Коробка сервопривода (рис.1(2), поз.5) трехходового вентиля не должна располагаться в нижнем положении (см. рисунок слева).

Установка смесительного узла должна производиться таким образом, чтобы отстойник фильтра (рис.1(2), поз.4) был направлен вниз, в противном случае повышенное засорение сетки фильтра повлечёт за собой снижение мощности воздухонагревателя и риск его замерзания.

Узел устанавливается так, чтобы вал мотора насоса (рис.**3**,поз.2) находился в горизонтальной плоскости.

Коробка электроподключения насоса (поз.1, рис3.) не должна располагаться в нижнем положении.

В случае изоляции (термоизоляции) корпуса насоса отверстия слива конденсата (рис.3, поз.4) должны быть открыты.

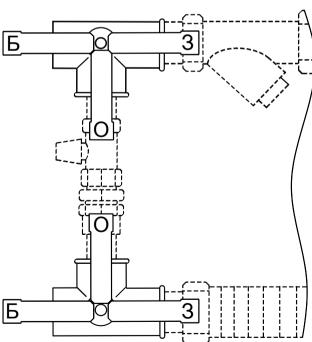

2 2 4 5 3

Рисунок 3

Винтовой регулировочный вентиль (рис.1(2), поз.2) предназначен для настройки оптимальной потери давления обратного клапана (рис.1(2), поз.3), который служит для выравнивания давления (не допущения взаимного влияния насосов узла и системы отопления), а так же предотвращает остановку тока воды в котловом контуре при работе узла. Регулировочный шток вентиля защищён съёмным колпачком.

ВНИМАНИЕ! Перед монтажом необходимо уточнить и отметить на корпусе узла функциональные положения рукояток кранов поз.1 (Б, О и 3) (см. рисунок справа):

- « **Б** » жидкость циркулирует по малому контуру узла (линия байпаса **Б** на рис. 1(2)) при его отключении без прерывания циркуляции в основной системе;
- « **O** » краны открыты, жидкость циркулирует по всем контурам узла;
- « $\bf 3$ » краны закрыты, жидкость не циркулирует;

<u>Примечание</u>: Для кранов с симметричной ручкой («бабочка») следует пометить рабочую часть (сторону) рукоятки.

5

Рисунок 1. Схема смесительных узлов **прямой** конфигурации

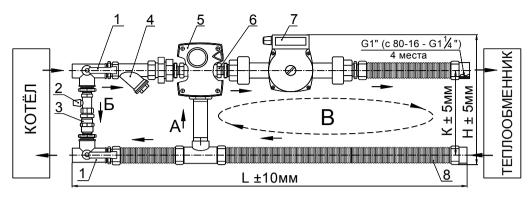
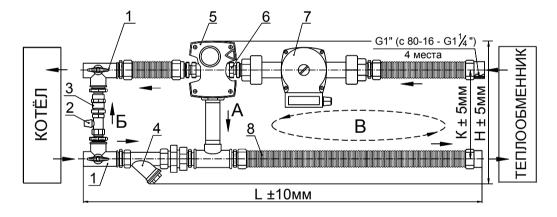



Рисунок 2. Схема смесительных узлов обратной конфигурации

где:

- 1. Запорные шаровые краны
- 2. Регулировочный вентиль байпаса 6. Трёхходовой вентиль
- 3. Обратный клапан байпаса
- 4. Фильтр с отстойником
- 5. Сервопривод трёхходового вентиля
- 7. Циркуляционный насос
- 8. Гибкие гофрированные патрубки (нерж. сталь)

КОМПЛЕКТ ПОСТАВКИ

Смесительные узлы поставляются в собранном и готовом к установке виде. Каждое изделие снабжается настоящим паспортом, являющимся одновременно руководством по монтажу и эксплуатации.

Примечание: Запасные части и инструмент в комплект поставки не входят.

6. ВЫВОД ИЗ ЭКСПЛУАТАЦИИ И УТИЛИЗАЦИЯ

По окончании срока службы изделие должно быть доставлено в специализированную организацию занимающуюся утилизацией промышленного оборудования.

При отсутствии данной организации следует разобрать его на отдельные компоненты по типу металла (гофрированные патрубки – нержавеющая сталь, краны, вентили, переходники и т.п. – латунь, насос – сталь и т. п.) и сдать в пункт приема металлолома.

Демонтаж и разборка должны осуществляться квалифицированным персоналом.

7. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Предприятие изготовитель гарантирует соответствие изделий требованиям технических условий при соблюдении потребителем правил эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок – 36 месяцев со дня продажи изделия.

По вопросам обеспечения гарантийных обязательств обращаться в компанию « КиН Сервис » (140091 Московская обл., г.Дзержинский, ул. Энергетиков д.1). Телефон "горячей линии" (495) 748-04-16.

Оборудование снимается с гарантии в случае выполнения потребителем или иной организацией, кроме указанной в предыдущем абзаце, ремонта, частичной или полной его разборки, а также его элементов без письменного согласования данных действий с компанией «КиН Сервис».

8. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

- 8.1. Приемка продукции производится потребителем в соответствии с «Инструкцией о порядке приемки продукции производственно-технического назначения и товаров народного потребления по качеству».
- 8.2. При обнаружении несоответствия качества, комплектности и т.п. потребитель обязан вызвать представителя предприятия-продавца для рассмотрения претензии и составления акта приемки продукции по качеству, который является основанием для решения вопроса о правомерности предъявляемой претензии.
- 8.3. При нарушении потребителем (заказчиком) правил транспортирования, приемки, хранения, монтажа и эксплуатации изделий претензии по качеству не принимаются.

9. СВЕДЕНИЯ ОБ ОБЯЗАТЕЛЬНОЙ СЕРТИФИКАЦИИ

Продукция соответствует всем национальным и международным стандартам, требования которых Государственным Законодательством РФ, техническими регламентами Таможенного союза и директивами Европейского Союза признаны обязательными для данной продукции.

Декларация соответствия ТР ТС: ТС RU Д-RU.AЛ16.B.05590 от 21.05.2013г.